A new well-posed vorticity divergence formulation of the shallow water equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Well-Posedness for the Viscous Shallow Water Equations

In this paper, we prove the existence and uniqueness of the solutions for the 2D viscous shallow water equations with low regularity assumptions on the initial data as well as the initial height bounded away from zero.

متن کامل

A Hamiltonian Vorticity-dilatation Formulation of the Compressible Euler Equations

Using the Hodge decomposition on bounded domains the compressible Euler equations of gas dynamics are reformulated using a density weighted vorticity and dilatation as primary variables, together with the entropy and density. This formulation is an extension to compressible flows of the well-known vorticity-stream function formulation of the incompressible Euler equations. The Hamiltonian and a...

متن کامل

New Riccati equations for well-posed linear systems

We consider the classic problem of minimizing a quadratic cost functional for well-posed linear systems over the class of inputs that are square integrable and that produce a square integrable output. As is well-known, the minimum cost can be expressed in terms of a bounded nonnegative selfadjoint operator X that in the finite-dimensional case satisfies a Riccati equation. Unfortunately, the in...

متن کامل

Efficient well-balanced hydrostatic upwind schemes for shallow-water equations

The proposed work concerns the numerical approximations of the shallow-water equations with varying topography. The main objective is to introduce an easy and systematic technique to enforce the well-balance property and to make the scheme able to deal with dry areas. To access such an issue, the derived numerical method is obtained by involving the free surface instead of the water height and ...

متن کامل

On the Advantage of Well-Balanced Schemes for Moving-Water Equilibria of the Shallow Water Equations

This note aims at demonstrating the advantage of moving-water well-balanced schemes over still-water well-balanced schemes for the shallow water equations. We concentrate on numerical examples with solutions near a moving-water equilibrium. For such examples, still-water well-balanced methods are not capable of capturing the small perturbations of the moving-water equilibrium and may generate s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ocean Modelling

سال: 2015

ISSN: 1463-5003

DOI: 10.1016/j.ocemod.2015.07.001